Search results

Search for "rat skin" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • ETHs. In this study they also examined in vitro and in vivo activities of EGCG, the main component of green tea, on rat skin when applied as a topical formulation. Two of the different ethosomal formulations of green tea extract which showed higher encapsulation efficiency percentage (EE%), lower PDI
PDF
Album
Full Research Paper
Published 31 May 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)

  • Michelle Romero-Franco,
  • Hilary A. Godwin,
  • Muhammad Bilal and
  • Yoram Cohen

Beilstein J. Nanotechnol. 2017, 8, 989–1014, doi:10.3762/bjnano.8.101

Graphical Abstract
  • nanoparticles in human volunteers and quantum dots ‘QDs’ in rat skin) and cause irritation (e.g., nano ZnO in zebrafish models) [10]. Oral exposure to ENMs can result in subsequent absorption in the GI tract and organ damage (e.g., nano Cu in mice via oral gavage damaged liver, spleen and kidneys, and nano ZnO
PDF
Album
Supp Info
Review
Published 05 May 2017

Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

  • Bharat Bhushan,
  • Si Chen and
  • Shirong Ge

Beilstein J. Nanotechnol. 2012, 3, 731–746, doi:10.3762/bjnano.3.83

Graphical Abstract
  • /bjnano.3.83 Abstract Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale
  • compared to that of virgin skin. But similar changes occur after skin cream treatment. Rat and pig skin show similar trends in friction and durability. Keywords: atomic force microscopy; damaged skin; pig skin; rat skin; skin cream; Introduction Skin is the largest outer organ. The skin structure of
  • mammals is mainly composed of three distinct layers: subcutis, dermis, and epidermis [1][2][3][4][5][6]. Rat skin and pig skin are common models used for skin in health and cosmetics studies. Figure 1 shows the epidermis and dermis of pig and rat skin [6][7]. The epidermis is the outer layer of skin. It
PDF
Album
Full Research Paper
Published 08 Nov 2012
Other Beilstein-Institut Open Science Activities